Counting Elliptic Curves with Prescribed Torsion
نویسندگان
چکیده
Mazur’s theorem states that there are exactly 15 possibilities for the torsion subgroup of an elliptic curve over the rational numbers. We determine how often each of these groups actually occurs. Precisely, if G is one of these 15 groups, we show that the number of elliptic curves up to height X whose torsion subgroup is isomorphic to G is on the order of X, for some number d = d(G) which we compute.
منابع مشابه
Some rank records for elliptic curves with prescribed torsion over quadratic elds
In this paper we construct elliptic curves over quadratic elds with prescribed torsion group and record rank. We do this using theoretical arguments and keeping lengthy computations to a minimum.
متن کاملFamilies of elliptic curves over quartic number fields with prescribed torsion subgroups
We construct infinite families of elliptic curves with given torsion group structures over quartic number fields. In a 2006 paper, the first two authors and Park determined all of the group structures which occur infinitely often as the torsion of elliptic curves over quartic number fields. Our result presents explicit examples of their theoretical result. This paper also presents an efficient ...
متن کاملFamilies of elliptic curves over cubic number fields with prescribed torsion subgroups
In this paper we construct infinite families of elliptic curves with given torsion group structures over cubic number fields. This result provides explicit examples of the theoretical result recently developed by the first two authors and A. Schweizer; they determined all the group structures which occur infinitely often as the torsion of elliptic curves over cubic number fields. In fact, this ...
متن کاملHigh rank elliptic curves with prescribed torsion group over quadratic fields
There are 26 possibilities for the torsion group of elliptic curves de ned over quadratic number elds. We present examples of high rank elliptic curves with given torsion group which give the current records for most of the torsion groups. In particular, we show that for each possible torsion group, except maybe for Z/15Z, there exist an elliptic curve over some quadratic eld with this torsion ...
متن کاملOn the number of elliptic curves with prescribed isogeny or torsion group over number fields of prime degree
Let p be a prime and K a number field of degree p. We count the number of elliptic curves, up to K-isomorphism, having a prescribed property, where this property is either that the curve contains a fixed torsion group as a subgroup, or that it has an isogeny of prescribed degree. We also study the following question: for a given n such that |Y0(n)(Q)| > 0, does every elliptic curve over K with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013